

Sample Paper

Class 9

Unicus Non-Routine Mathematics Olympiad

Section	Total Questions	Marks per Questions	Total Questions
Classic Section	10	3	30
Scholar Section	10	6	60
Grand Total	20		90

	Classic Section (Each Question is 3 Marks)	
1. If the mean of a frequency distribution is 8.1 and Σ f _i x _i : = 132 + 5x, Σ f _i = 20, then x = ?		
	a. 3 c. 5	b. 4 d. 6
 If the point {x₁ + t (x₂ - x₁), y₁ + t (y₂ - y₁)} divides the join of (x₁, y₁) and (x₂, y₂) internally then the condition of t will be. 		
	a. t < 0	b. t = 1
	a. t < 0 c. 0 < t < 1	b. t = 1 d. t > 1
3.	c. $0 < t < 1$ The angle of elevation of the top	

4.	If $\cos x + \cos^2 x =$	1, then $sin^{12}x$ +	- 3sin ¹⁰ x +	$3\sin^8 x + \sin^6 x = ?$
----	--------------------------	-----------------------	--------------------------	----------------------------

a. 0	b. √2
c. 1	d. 2

5. A semicircle having a centre at O and a radius equal to 4 is drawn with PQ as the diameter as shown in the figure given below. OSRU is a rectangle such that the ratio of the area of the semicircle to the area of the rectangle is 2π : 3 or cuts the semicircle at T. Find the length of line segment TQ.

6. BC is the diameter of a semi-circle. The sides AB and AC of a triangle ABC meet the semicircle in p and q respectively. PQ subtends 140o at the centre of the semi-circle. Find the value of ∠A.

a.	10°	b.	20°
C.	30°	d.	40°

Unicus Non-Routine Mathematics Olympiad (UNRMO)

7. The area of a square inscribed in a semicircle to the area inscribed in a quadrant of the same circle.

a. 2:1	b. 3:2
c. 5:3	d. 8:5

8. Let α , β , γ be the roots of $x^3 + qx + r = 0$, then the equation whose roots are $\beta^2 + \beta\gamma + \gamma^2$; $\gamma^2 + \sqrt{\alpha + \alpha^2}$ and $\alpha^2 + \alpha\beta + \beta^2$ is.

a. (y - q) ³ = 0	b. $(y + q)^3 = 0$
c. $(y + 2q)^3 = 0$	d. $(y - 2q)^3 = 0$

9. If α and β are the roots of the equation $x^2 - px + q = 0$ and $\alpha > 0$, $\beta > 0$, then find the value of $\alpha^{1/4} + \beta^{1/4}$.

a. $[P + \sqrt{q} + 4q^{1/4} \sqrt{(P + \sqrt{q})}]^4$	b. $[P + 6\sqrt{q} + 4q^{1/4} \sqrt{(P + 2\sqrt{q})}]^4$
c. $[P + \sqrt{q} + 4q^{1/4} \sqrt{(P + 4\sqrt{q})}]^4$	d. $[P + 6\sqrt{q} + 4q^{1/4}\sqrt{(P + 4\sqrt{q})}]^4$

10. The p^{th} term of an A.P. is 20 and q^{th} term is 10. Find the sum of the first (p + q) terms.

a. (p - q)/2{30 + {10/(p + q)}	b. (p + q)/2{30 + {10/(p - q)}
c. (p + q)/2{30 − {10/(p − q)}	d. (p − q)/2{10 + {30/(p − q)}

Scholar Section (Each Question is 6 Marks)

11. If u_i = (xi – 25)/10, Σ f_i u_i = 20, Σ f_i = 100, then x̄ = ?
a. 23
b. 24
c. 27
d. 25

12. If $S_n = \sum tr = 1/6 n (2n^2 + 9n + 13)$, then $\sum \sqrt{tr} = ?$

a. 1/2 n (n + 1)b. 1/2 n (n + 2)c. 1/2 n (n + 3)d. 1/2 n (n + 5)

13. The value of $(1 + \cos \pi/8)$ $(1 + \cos 3\pi/8)$. $(1 + \cos 5\pi/8)$ $(1 + \cos 7\pi/8)$ is equal to:

a. 1/8	b1/8
c. 1/4	d1/4

14. If $\tan \theta = 1 - e^2$, then $\sec \theta + \tan 3\theta \csc \theta = ?$

a. (1 - e²)3/2	b. (2 - e ²)1/2
c. (2 - e ²)3/2	d. (2 - e ³)3/2

15. Square ABCD has an area of 4. E is the midpoint of AB. Similarly, F, G, H and I are midpoints of DE, CF, DG and CH. Find the area ΔIDC.

a. 1/4	b. 1/8
c. 1/16	d. 1/32

16. Two circles with centres A and B intersect at points P and Q so that ∠PAQ = 60° and ∠PBQ = 90°. What is the ratio of the area of the circle with centre A to the area of the circle with centre B?

a. 3 : 1	b. 3:2
c. 4:3	d. 2:1

17. Four circles of r = 1, are each tangent of two sides of a square and externally tangent to a circle of r = 2. If the area of the square is A, then find A - $12\sqrt{2}$.

a. 14	b. 21
c. 22	d. 24

18. Given that $x^6 + 4x^5 + 6x^4 + 6x^3 + 4x^2 + 2x + 1$ can be factorized as $(x^2 + ax + 1)(x^4 + bx^3 + cx^2 + dx + 1)$ then (a + b) = ?

a.	1	b.	2
C.	3	d.	4

19. Simplify $[\sqrt[3]{6\sqrt{a9}}]4 [6\sqrt{(\sqrt[3]{a9})}]4$ is

a. a ¹⁶	b. a ¹²
c. a ⁸	d. a ⁴
c. a ⁸	d. a ⁴

20. Solve the equation $(x - 1)^4 + (x - 5)^4 = 82$.

a. x = ± 1, 4, 2	b. x = 4, 2, -3 -5i, 2 + i
c. $x = 3 \pm 5i, 4, 2$	d. x = 3 ± 5i, ± 1

Answer Key

1.	d	2.	С	3.	а	4.	С	5.	b	6.	b	7.	d
8.	b	9.	b	10.	b	11.	С	12.	С	13.	а	14.	С
15.	b	16.	d	17.	С	18.	d	19.	d	20.	а		