Sample Paper
(2020-21)

## Class 9 \& 10

## Unicus Non-Routine Mathematics Olympiad

| Section - Class* <br> syylabus covered | Total <br> Questions | Marks per <br> Question | Total Marks |
| :--- | :---: | :---: | :---: |
| Classic Section - Class 9 \& 10 | 10 | 3 | 30 |
| Scholar Section - Class 9 \& 10 | 10 | 6 | 60 |
| Grand Total | $\mathbf{2 0}$ |  | $\mathbf{9 0}$ |

[^0]1. The $p^{\text {th }}$ term of an A.P is 20 and $q^{\text {th }}$ term is 10 . Find the sum of first $(p+q)^{\text {th }}$ terms.
a) $5(p+q / p-q)\{(3 p-(q-1))\}$
b) $5(p+q / p-q)\{(3 p-(q+1))\}$
c) $5(p+q / p-q)\{(3 p-(-q-1))\}$
d) $5(p+q / p-q)\{(3 p-(1-q))\}$

Correct Answer: b
3 Marks
2. It $\alpha$ and $\beta$ are the roots of the equation $x^{2}-p x+q=0$ and $\alpha>0, \beta>0$. then the value of $\alpha^{1 / 4}+\beta^{1 / 4}=$
a) $\left[P+\sqrt{ } q+4 q^{1 / 4} \sqrt{ }(P+\sqrt{ } q)\right]^{4}$
b) $\left[P+6 \sqrt{ } q+4 q^{1 / 4} \sqrt{ }(P+2 \sqrt{ } q)\right]^{4}$
c) $\left[P+\sqrt{ } q+4 q^{1 / 4} \sqrt{ }(P+4 \sqrt{ } q)\right]^{4}$
d) $\left[P+6 \sqrt{ } q+4 q^{1 / 4} \sqrt{ }(P+4 \sqrt{ } q)\right]^{4}$

Correct Answer: b
3 Marks
3. Let $\alpha, \beta$, $y$ are the roots of $x^{3}+q x+r=0$, then the equation whose roots are $\beta^{2}+\beta \gamma+$ $\gamma^{2} ; \gamma^{2}+\gamma \alpha+\alpha^{2}$ and $\alpha^{2}+\alpha \beta+\beta^{2}$ is.
a) $(y-q)^{3}=0$
b) $(y+q)^{3}=0$
c) $(y+2 q)^{3}=0$
d) $(y-2 q)^{3}=0$

Correct Answer: b
3 Marks
4. The area of a square inscribed in a semicircle to the area inscribed in a quadrant of the same circle.
a) $2: 1$
b) $3: 2$
c) $5: 3$
d) $8: 5$
5. $B C$ is the diameter of a semi circle. The sides $A B$ and $A C$ of a triangle $A B C$ meet the semi circle in $p$ and $q$ respectively. PQ subtends $140^{\circ}$ at the centre of the semi circle then $\angle \mathrm{A}=$ ?
a) $10^{\circ}$
b) $20^{\circ}$
c) $30^{\circ}$
d) $40^{\circ}$

Correct Answer: b

## 3 Marks

6. Let the circum radius of $\triangle A B C$ be 4 and the in radius of $X Y Z$ be 2 of the area of $A B C=$ 32 , then area of $\mathrm{XYZ}=$ ?

a) 8
b) 16
c) 4
d) 20

Correct Answer: b

## 3 Marks

7. It $\cos x+\cos ^{2} x=1$, then $\sin ^{12} x+3 \sin ^{10} x+3 \sin ^{8} x+\sin ^{6} x=$
a) 0
b) $\sqrt{ } 2$
c) 1
d) 2
8. The angle of elevation of the top of a tower from a point $A$ due south of the tower is $x$ and from $B$ due east of the tower is $y$. If $A B=h$, then calculate the height of the tower.
a) $h / \sqrt{ }\left(\cot ^{2} x+\cot ^{2} y\right)$
b) $h / \sqrt{ }\left(\cot ^{2} x-\cot ^{2} y\right)$
c) $2 \mathrm{~h} / \sqrt{ }\left(\cot ^{2} \mathrm{x}-\cot ^{2} \mathrm{y}\right)$
d) $2 \tan x / \sqrt{ }\left(\cot ^{2} x+\cot ^{2} y\right)$

Correct Answer: a
3 Marks
9. It the point $\left\{\mathrm{x}_{1}+\mathrm{t}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right), \mathrm{y}_{1}+\mathrm{t}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\right\}$ divides the join of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ internally then the condition of $t$ will be.
a) $t<0$
b) $t=1$
c) $0<t<1$
d) None of these

Correct Answer: c

## 3 Marks

10. If the mean of a frequency distribution is 8.1 and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}:=132+5 \mathrm{x}, \Sigma \mathrm{f}_{\mathrm{i}}=20$, then $\mathrm{x}=$ ?
a) 3
b) 4
c) 5
d) 6

Correct Answer: d
3 Marks
11. Solve the equation $(x-1)^{4}+(x-5)^{4}=82$.
a) $x= \pm 1,4,2$
b) $x=4,2,-3-5 i, 2+i$
c) $x=3 \pm 5 i, 4,2$
d) $x=3 \pm 5 i, \pm 1$
12. Simplify $\left.\left[\sqrt[3]{( } 6 \sqrt{ } \mathrm{a}^{9}\right)\right]^{4}\left[6 \sqrt{ }\left(\sqrt[3]{a^{9}}\right)\right]^{4}$ is
a) $a^{16}$
b) $a^{12}$
c) $a^{8}$
d) $a^{4}$

Correct Answer: d
13. Given that $x^{6}+4 x^{5}+6 x^{4}+6 x^{3}+4 x^{2}+2 x+1$ can be factorized as $\left(x^{2}+a x+1\right)\left(x^{4}+b x^{3}\right.$ $\left.+c x^{2}+d x+1\right)$ then $(a+b)=$ ?
a) 1
b) 2
c) 3
d) 4

Correct Answer: d
6 Marks
14. Four circles of $r=1$, are each tangent of two sides of a square and externally tangent to a circle of $r=2$. It the area of the square is $A$, then $A-12 \sqrt{ } 2$ ?
a) 14
b) 21
c) 22
d) 24

## Correct Answer: c

6 Marks
15. Two circle with centres $A$ and $B$ intersect at points $P$ and $Q$ so that $\angle P A Q=60^{\circ}$ and $\angle \mathrm{PBQ}=90^{\circ}$. What is the ratio of the area of the circle with centre $A$ to the area of the circle with centre B ?
a) $3: 1$
b) $3: 2$
c) $4: 3$
d) $2: 1$
16. Square $A B C D$ has an area $4, E$ is the midpoint of $A B$. Similarity $F, G, H$ and $I$ are mid points of DE, CF, DG and CH, then area $\triangle I D C=$ ?

a) $1 / 4$
b) $1 / 8$
c) $1 / 16$
d) $1 / 32$

Correct Answer: b

## 6 Marks

17. It $\tan \theta=1-\mathrm{e}^{2}$, then $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta=$ ?
a) $\left(1-e^{2}\right)^{3 / 2}$
b) $\left(2-e^{2}\right)^{1 / 2}$
c) $\left(2-e^{2}\right)^{3 / 2}$
d) None of these

Correct Answer: c
6 Marks
18. The value of $(1+\cos \pi / 8)(1+\cos 3 \pi / 8) \cdot(1+\cos 5 \pi / 8)(1+\cos 7 \pi / 8)$ is equal to
a) $1 / 8$
b) $-1 / 8$
c) $1 / 4$
d) $-1 / 4$
19. If $S_{n}=\sum t_{r}=1 / 6 n\left(2 n^{2}+9 n+13\right)$, then $\sum \sqrt{ } t_{r}=$ ?
a) $1 / 2 \mathrm{n}(\mathrm{n}+1)$
b) $1 / 2 n(n+2)$
c) $1 / 2 \mathrm{n}(\mathrm{n}+3)$
d) $1 / 2 \mathrm{n}(\mathrm{n}+5)$

Correct Answer: c
6 Marks
20. If $u_{i}=\left(x_{i}-25\right) / 10, \Sigma f_{i} u_{i}=20, \Sigma f_{i}=100$, then $\bar{x}=$ ?
a) 23
b) 24
c) 27
d) 25

Correct Answer: c
6 Marks


[^0]:    Note: There will be negative marking of $1 / 3^{\text {rd }}$ of the marks allotted for that question if the answer is incorrect.

