

Sample Paper

(2020-21)

Class 9 & 10

Unicus Non-Routine Mathematics Olympiad

Section – Class* *Syllabus covered	Total Questions	Marks per Question	Total Marks
Classic Section – Class 9 & 10	10	3	30
Scholar Section – Class 9 & 10	10	6	60
Grand Total	20		90

Note: There will be negative marking of 1/3rd of the marks allotted for that question if the answer is incorrect.

- 1. The pth term of an A.P is 20 and qth term is 10. Find the sum of first (p+q)th terms.
 - a) $5(p+q/p-q){(3p-(q-1))}$
 - b) $5(p+q/p-q)\{(3p-(q+1))\}$
 - c) $5(p+q/p-q)\{(3p-(-q-1))\}$
 - d) $5(p+q/p-q){(3p-(1-q))}$

Correct Answer: b

3 Marks

- 2. It α and β are the roots of the equation x^2 px + q = 0 and α > 0, β > 0. then the value of $\alpha^{1/4}$ + $\beta^{1/4}$ =
 - a) $[\dot{P} + \sqrt{q} + 4q^{1/4} \sqrt{(P + \sqrt{q})}]^4$
 - b) $[P + 6\sqrt{q} + 4q^{1/4} \sqrt{(P + 2\sqrt{q})}]^4$
 - c) $[P + \sqrt{q} + 4q^{1/4} \sqrt{(P + 4\sqrt{q})}]^4$
 - d) $[P + 6\sqrt{q} + 4q^{1/4}\sqrt{(P + 4\sqrt{q})}]^4$

Correct Answer: b

3 Marks

- 3. Let α , β , γ are the roots of $x^3 + qx + r = 0$, then the equation whose roots are $\beta^2 + \beta\gamma + \gamma^2$; $\gamma^2 + \gamma \alpha + \alpha^2$ and $\alpha^2 + \alpha\beta + \beta^2$ is.
 - a) $(y q)^3 = 0$
 - b) $(y + q)^3 = 0$
 - c) $(y + 2q)^3 = 0$
 - d) $(y 2q)^3 = 0$

Correct Answer: b

3 Marks

- **4.** The area of a square inscribed in a semicircle to the area inscribed in a quadrant of the same circle.
 - a) 2:1
 - b) 3:2
 - c) 5:3
 - d) 8:5

Correct Answer: d

- 5. BC is the diameter of a semi circle. The sides AB and AC of a triangle ABC meet the semi circle in p and q respectively. PQ subtends 140° at the centre of the semi circle then $\angle A = ?$
 - a) 10^{0}
 - b) 20⁰
 - c) 30°
 - d) 40^{0}

Correct Answer: b

3 Marks

6. Let the circum radius of $\triangle ABC$ be 4 and the in radius of XYZ be 2 of the area of ABC = 32, then area of XYZ = ?

- a) 8
- b) 16
- c) 4
- d) 20

Correct Answer: b

3 Marks

- 7. It $\cos x + \cos^2 x = 1$, then $\sin^{12} x + 3\sin^{10} x + 3\sin^8 x + \sin^6 x =$
 - a) 0
 - b) √2
 - c) 1
 - d) 2

Correct Answer: c

- 8. The angle of elevation of the top of a tower from a point A due south of the tower is x and from B due east of the tower is y. If AB = h, then calculate the height of the tower.
 - a) $h/\sqrt{\cot^2 x + \cot^2 y}$
 - b) $h/\sqrt{\cot^2 x \cot^2 y}$
 - c) $2h/\sqrt{\cot^2 x \cot^2 y}$
 - d) $2 \tan x/\sqrt{\cot^2 x + \cot^2 y}$

Correct Answer: a

3 Marks

- 9. It the point $\{x_1 + t (x_2 x_1), y_1 + t (y_2 y_1)\}$ divides the join of $\{x_1, y_1\}$ and $\{x_2, y_2\}$ internally then the condition of t will be.
 - a) t < 0
 - b) t = 1
 - c) 0∠t∠1
 - d) None of these

Correct Answer: c

3 Marks

- **10.** If the mean of a frequency distribution is 8.1 and Σ f_ix_i : = 132 + 5x, Σ f_i = 20, then x = ?
 - a) 3
 - b) 4
 - c) 5
 - d) 6

Correct Answer: d

3 Marks

- **11.** Solve the equation $(x 1)^4 + (x 5)^4 = 82$.
 - a) $x = \pm 1, 4, 2$
 - b) x = 4, 2, -3, -5i, 2 + i
 - c) $x = 3 \pm 5i, 4, 2$
 - d) $x = 3 \pm 5i, \pm 1$

Correct Answer: a

c) 4:3 d) 2:1

Correct Answer: d

nicus	Non-Routine Mathematics Olympiad (UNRMO)	
12	Simplify $[\sqrt[3]{(6\sqrt{a^9})}]^4 [6\sqrt{(\sqrt[3]{a^9})}]^4$ is a) a^{16} b) a^{12}	
	c) a ⁸ d) a ⁴	
	Correct Answer: d	6 Marks
13	Given that $x^6 + 4x^5 + 6x^4 + 6x^3 + 4x^2 + 2x + 1$ can be factorized as $(x^2 + ax^2 + ax^2 + ax + 1)$ then $(a + b) = ?$ a) 1 b) 2 c) 3 d) 4	x + 1) (x ⁴ + bx
	Correct Answer: d	6 Marks
14	Four circles of r = 1, are each tangent of two sides of a square and extern a circle of r = 2. It the area of the square is A, then A - 12√2? a) 14 b) 21 c) 22 d) 24	nally tangent to
	Correct Answer: c	6 Marks
15	 Two circle with centres A and B intersect at points P and Q so that ∠PAQ ∠PBQ = 90°. What is the ratio of the area of the circle with centre A to the circle with centre B? a) 3:1 b) 3:2 	

16. Square ABCD has an area 4, E is the midpoint of AB. Similarity F, G, H and I are mid points of DE, CF, DG and CH, then area ΔIDC = ?

- a) 1/4
- b) 1/8
- c) 1/16
- d) 1/32

Correct Answer: b

6 Marks

17. It $\tan \theta = 1 - e^2$, then $\sec \theta + \tan^3 \theta \csc \theta = ?$

- a) $(1 e^2)^{3/2}$
- b) $(2 e^2)^{1/2}$
- c) $(2 e^2)^{3/2}$
- d) None of these

Correct Answer: c

6 Marks

18. The value of $(1 + \cos \pi/8)$ $(1 + \cos 3\pi/8)$. $(1 + \cos 5\pi/8)$ $(1 + \cos 7\pi/8)$ is equal to

- a) 1/8
- b) -1/8
- c) 1/4
- d) -1/4

Correct Answer: a

Unicus Non-Routine Mathematics Olympiad (UNRMO)

19. If
$$S_n = \sum t_r = 1/6 \text{ n } (2n^2 + 9n + 13)$$
, then $\sum \sqrt{t_r} = ?$

- a) 1/2 n (n + 1)
- b) 1/2 n (n + 2)
- c) 1/2 n (n + 3)
- d) 1/2 n (n + 5)

Correct Answer: c

6 Marks

20. If
$$u_i = (x_i - 25)/10$$
, $\Sigma f_i u_i = 20$, $\Sigma f_i = 100$, then $\overline{x} = ?$

- a) 23
- b) 24
- c) 27
- d) 25

Correct Answer: c